Binomial arithmetical rank of edge ideals of forests
نویسندگان
چکیده
منابع مشابه
On the arithmetical rank of the edge ideals of forests
We show that for the edge ideals of a certain class of forests, the arithmetical rank equals the projective dimension.
متن کاملBinomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملBinomial Edge Ideals of Graphs
We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...
متن کاملSpecializations of Multigradings and the Arithmetical Rank of Lattice Ideals
In this article we study specializations of multigradings and apply them to the problem of the computation of the arithmetical rank of a lattice ideal ILG ⊂ K[x1, . . . , xn]. The arithmetical rank of ILG equals the F-homogeneous arithmetical rank of ILG , for an appropriate specialization F of G. To the lattice ideal ILG and every specialization F of G we associate a simplicial complex. We pro...
متن کاملOn the arithmetical rank of an intersection of ideals
We determine sets of elements which, under certain conditions, generate an intersection of ideals up to radical.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2013
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2013-11473-5